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Why	JETSCAPE?	
•  Almost	two	decades	from	the	start	of	RHIC:	the	qualita>ve	picture	of	

nuclear	modifica>on	of	jet	is	generally	accepted	
•  Precise	measurement	of	jet	in	the	near	future	(e.g.	sPHENIX)	

mo>vates	precise	quan>ta>ve	understanding	of	jet	theory	

•  Requires	sophis>cated	Monte-Carlo	event	generator	of	jet	in	heavy-
ion	collisions	that	includes	both	advanced	jet	energy	loss	theory	and	
modern	sta>s>cal	and	computa>onal	techniques	

What	is	JETSCAPE	Collabora5on?	(hPp://jetscape.wayne.edu)	
•  The	Jet	Energy-loss	Tomography	with	a	Sta>s>cally	and	

Computa>onally	Advanced	Program	Envelope	Collabora5on	

What	does	JETSCAPE	promise?		
•  Develop	state	of	the	art	theore>cal	model	of	jet	energy	loss	

•  Develop	sta>s>c	tool	for	extrac>ng	crucial	physical	parameters	from	
model	to	data	comparison	

•  Develop	a	user-friendly	Monte-Carlo	package	of	the	above	two		



Part	I:	Modeling	Mul5stage	Jet	Evolu5on	

The	JETSCAPE	Collabora>on	work	arxiv:1705.00050	



Full	evolu5on	of	jets	in	heavy-ion	collisions	

Jet	partons	are	produced	with	high	Q	and	
high	E	(DGLAP,	higher-twist)	
->	lose	Q	faster	than	E	[	Majumder	and	
Putschke,	PRC	93	(2016)	054909	]		

->	low	Q	and	high	E	(Transport,	higher-
twist,	AMY)	
->	low	Q	and	low	E	(near	thermal)	
(strongly	coupled	approach)	

Grand picture (leading hadrons) 

high Q and 
high E 

low Q and high E 

low Q and low E 
(near thermal) 

low Q and low E 
(near thermal) 



Milestones	of	collabora5on	work	
[	TECHQM:	PRC	86	(2012)	064904	]	 [	JET:	PRC	90	(2014)	014909	]		

JETSCAPE:	to	combine	different	theories	into	a	unified	
approach	and	provide	a	Monte-Carlo	generator:	DGLAP	
(high	Q)	+	transport	(low	Q)	+	strongly	coupled	(thermal)	

TECHQM:	comparison	of	medium-induced	gluon	spectra	in	a	brick	
JET:	constraint	of	q	in	realis>c	hydro	medium	using	different	theories		^	



Stage	1:	high	Q	and	high	E	
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DGLAP	evolu>on	for	parton	fragmenta>on	func>on	at	high	Q:	
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[ higher-twist energy loss formalism: Guo and Wang (2000), Majumder (2012) ] 

of	quark/gluon	due	to	2->2	scaPerings	
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MATTER	(The	Modular	All	Twist	Transverse-scaPering	Elas>c-drag	and	
Radia>on)	[Wayne:	PRC	88,	014909,	arXiv:1702.05862)]		

Stage	1:	high	Q	and	high	E	

Monte-Carlo	Implementa>on:		 0 < r < 1

splifng	happens	above	Q0	(min.	allowed	virtuality)		r � �(Q
max
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no	splifng	above	Q	

splifng	happens	at	(or	below)	scale	Q	

This	Q	also	gives	the	new	Qmax	for	the	next	splifng	(itera>on)	

a	vituality-ordered	parton	showers	from	ini>al	Qmax	to	Q0			

For	a	given	splifng,	the	p+	frac>on	of	the	two	daughter	partons	are	
determined	by	P(z),	and	pT	w.r.t.	the	parent	parton	is	determined	by	
the	difference	in	invariant	mass	between	the	parent	and	daughters.	



Stage	2:	low	Q	and	high	E	
Switch	to	>me-ordered	transport	model	that	simulates	parton	showers	
at	(or	below)	Q0	(with	on-shell	approxima>on)	

LBT	(Linear	Boltzmann	Transport)	
[LBL-CCNU:	PRL	111	(2013)	062301,	PRC	94	(2016)	014909,	arXiv:1704.03648]	

Evolu>on	of	jet	parton	“1”:	 p1 · @f1(x1, p1) = E1(Cel + Cinel)

Elas>c	ScaPering	rate:		
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Inelas>c	scaPering	rate	(average	gluon	number	per	Δt):	

• Medium-induced	gluon	spectrum	is	taken	from	HT	(same	as	MATTER)	
• Mul>ple	gluon	emission	in	Δt	is	allowed	–	assuming	Possion	distribu>on	
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Separa5on	scale	between	MATTER	and	LBT	

MATTER	(virtuality-ordered)	evolves	partons	down	to	Q0	and	LBT	
(5me-ordered)	con5nues	parton	evolu5on	below	Q0		

•  Fixed	Q0	(both	in	vacuum	and	medium):	1,	2	or	3	GeV	will	be	used	and	
compared.	

• Dynamical	Q0	(virtuality	gain	from	scaPering	with	the	medium):	

*	Dynamical	Q0	is	only	meaningful	in	a	thermal	medium,	in	vacuum,	Q0	=	
1	GeV	vacuum	

In	this	work,	sta>c	medium	with	T	=	250	MeV	is	used.	Effects	of	medium	
length	L	and	ini>al	parton	(quark)	energy	E	will	be	inves>gated.	



Switching	t0	between	MATTER	and	LBT	
The	>me	MATTER	takes	to	
evolve	jet	parton	down	to	
Q0	is	NOT	small	(vs.	τ0).	

when	a	given	parton	hit	Q0	
aser	mul>ple	splifngs			
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Switching	t0	between	MATTER	and	LBT	
The	>me	MATTER	takes	to	
evolve	jet	parton	down	to	
Q0	is	NOT	small	(vs.	τ0).	
Separa>on	>me	(t0)	
decrease	if	Einit	decreases	
or	Q0	increases.			
For	Einit	=	50	GeV,	L	=	4	fm,	
dynamical	Q0	is	consistent	
with	2	GeV	at	the	high	E	
end,	but	approaches	1	GeV	
at	low	energy.	For	Einit	=	
200	GeV,	dynamical	Q0	

starts	at	3	GeV	at	the	high	
E	end.	

For	fixed	Q0,	changing	from	L	=	4	to	8	fm	increases	scaPering	process	
(virtuality	gain)	and	thus	may	delay	t0;	for	dynamical	Q0,	extending	L	
increases	the	range	where	larger	Q0	is	applied	and	shortens	t0.		

when	a	given	parton	hit	Q0	
aser	mul>ple	splifngs			
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X
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dN/dE	for	Ei	=	50	GeV	and	L	=	4	fm	

Vacuum:	Sudakov	type	of	
shower	with	vacuum	splifng	
func>on	

MATTER:	Sudakov	type	of	
shower	with	vacuum	+	medium	
modified	splifng	func>on	

LBT:	Partons	from	vacuum	
shower	evolve	the	en>re	4	fm	
in	LBT	

MATTER	+	LBT:	Combined	
scheme	–	partons	evolve	in	
MATTER	up	to	t0	and	then	in	
LBT	up	to	4	fm	

Energy	distribu>on	of	final	shower	partons	from	a	single	quark	at	E	=	50	GeV	
through	a	brick	with	T	=	250	MeV	and	L	=	4	fm	



dN/dE	for	Ei	=	50	GeV	and	L	=	4	fm	

For	Einit	=	50	GeV,	MATTER	
evolu>on	(w.r.t	vacuum	shower)	is	
weak	if	Q0	>	2	GeV	(scale	of	the	
medium								).	

Energy	distribu>on	of	final	shower	partons	from	a	single	quark	at	E	=	50	GeV	
through	a	brick	with	T	=	250	MeV	and	L	=	4	fm	
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Pure	LBT	evolu>on	is	stronger	than	
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constraint	from	scale	dependence	
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to	hit	Q0	in	MATTER.		
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dN/dE	for	Ei	=	50	GeV	and	L	=	4	fm	

For	Einit	=	50	GeV,	MATTER	
evolu>on	(w.r.t	vacuum	shower)	is	
weak	if	Q0	>	2	GeV	(scale	of	the	
medium								).	

Pure	LBT	evolu>on	is	stronger	than	
pure	MATTER	since	there	is	no	
constraint	from	scale	dependence	
in	>me-ordered	transport	model.	

Effect	of	LBT	in	MATTER	+	LBT	is	
strong	for	low	energy	partons,	but	
is	weaker	for	high	energy	ones	
since	it	took	longer	>me	for	them	
to	hit	Q0	in	MATTER.		

Dynamical	Q0	is	close	to	the	fixed	
Q0	=	2	GeV	case	when	Einit	=	50	GeV.	

Energy	distribu>on	of	final	shower	partons	from	a	single	quark	at	E	=	50	GeV	
through	a	brick	with	T	=	250	MeV	and	L	=	4	fm	
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•  In	medium	evolu>on	changes	the	jet	shape	–	depletes	energy	in	small	
cone	and	enhance	energy	in	large	cone.		

•  LBT	is	more	effec>ve	than	MATTER	in	shising	energy	distribu>on	into	
larger	angle	since	elas>c	scaPering	is	included	in	LBT.	

•  Interes>ng	non-monotonic	behavior	at	Q0	=	1	GeV	--	enhanced	
Sudakov	type	splifng	at	very	small	r	and	LBT	scaPering	at	large	r.		



•  Will	implement	the	combined	energy	loss	approach	in	
realis>c	hydrodynamic	medium,	and	study	observables	at	
hadron	level	with	fragmenta>on	+	coalescence	model	

•  Will	include	more	approaches	into	the	same	framework,	
such	as	the	strongly	coupled	approach	for	the	near	thermal	
partons	

Future	development	of	physics	model	



Part	II:	Sta5s5c	Analysis	for	Jet	



Physics	mo5va5on	of	sta5s5cs	analysis	

Compare	physics	model	to	experimental	data	and	extract	crucial	
parameters	that	quan>fy	the	proper>es	of	the	quark-gluon	plasma	
created	in	rela>vis>c	heavy-ion	collisions.	

Example:	JET	Collabora>on	work	[	PRC	90	(2014)	014909	]		

HT-BW	 HT-M	 GLV	 AMY	

RH
IC
	

LH
C	



Constraint	q	from	the	JET	Collabora>on	^	

q:	transverse	momentum	
broadening	of	jet	per	unit	
>me	inside	a	medium	due	
to	elas>c	scaPering	with	
the	medium	

^	

•  Single	parameter	is	used	q	or	αs	for	each	model	
•  Each	model	is	compared	to	only	one	set	of	experimental	data	from	RHIC	and	
one	from	LHC	separately	

•  A	jump	of	q	as	func>on	of	temperature	(T)	
•  Smooth	func>on	of	T	needs	mul>-dimensional	parameter	space	and	
simultaneous	comparison	to	mul>ple	data	sets	–	computa5onal	expensive	

^	

^	

Physics	mo5va5on	of	sta5s5cs	analysis	



Model	to	data	comparison	setup:	physics	
Model:	LBT	(	Linear	Boltzmann	Transport	model	)	

Parameters:	2-dimensinal	parameter	space	(											and									):	
(1)  fixed	strong	coupling											for	thermal	medium	(low	energy	scale)	
(2)  Running	coupling	constant	for	jet-medium	interac>on	
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Data:	Simultaneous	descrip>on	of	single	hadron	RAA	from	RHIC	to	LHC	
(	AuAu@200GeV,	PbPb@2760GeV	and	PbPb@5020GeV,	2	centrality	
bins	for	each	system,	6	data	sets	in	total	)	



Gaussian	Process	Emulator	–	Fast	Surrogate	of	model	calcula5on:		
Train	Gaussian	process	emulator	with	smartly	chosen	points	(La5n	
Hypercube)	in	the	parameter	space	(10*dimension	points	are	sufficient)	

Model	to	data	comparison	setup:	sta5s5cs	
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Gaussian	process	emulator	can	
reproduce	model	calcula>on	and	
serve	as	fast	surrogate	–	“model	
the	model”	

P

post

(x⇤|X,Y, y

exp

) / P

likelihood

(X,Y, y

exp

|x⇤)Pprior

(x⇤)

Bayesian	Analysis:	
Use	the	emulator	to	sweep	over	the	parameter	space,	compare	
to	experimental	data,	and	compute	the	posterior	probability	of	
each	set	of	parameters	based	on	the	Bayes’	Theorem	



Posterior Distribution
•  diagonals: probability distribution of each 

parameter, integrating out all others
•  off-diagonals: pairwise distributions 

showing dependence between parameters 

Physics Model:
•  LBT
•  hydrodynamics

Model Parameters - System Properties
•  2 parameters for the strong coupling constant

Experimental Data
•  RHIC & LHC hadron RAA

Gaussian Process Emulator
•  non-parametric interpolation
•  fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

•  random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

•  prior: initial knowledge of parameters
•  likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on
Latin hypercube

Extraction of QGP Properties via a Model-to-Data Analysis

Flow	chart	of	sta5s5cs	analysis	



Calcula>on	prior	to	Bayesian	analysis	(no	knowledge	of	parameter	space)	

Sta5s5cs	analysis	–	preliminary	results	
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Calcula>on	prior	to	Bayesian	analysis	(no	knowledge	of	parameter	space)	
Calcula>on	with	posterior	probability	distribu>on	given	by	Bayesian	analysis	

Sta5s5cs	analysis	–	preliminary	results	
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Strong	correla>on	between	the	two	input	parameters	
Constraint	range	with	60%	C.L.:	

Constraint	of	the	two	input	parameters	
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temperature	dependence	 momentum	dependence	

Extracted	q	from	LBT	+	Bayesian	analysis	

Not	inconsistent	with	previous	JET	collabora>on	work.	

Hint	of	smaller	band	for	q	
•  Full	Monte-Carlo	implementa>on	vs.	semi-analy>cal	calcula>on	
•  Inclusion	of	elas>c	scaPering	in	LBT	
•  Need	more	sophis>cated	parametriza>on	of	the	temperature	
dependence	of	αs	

^	

^	



•  Established	a	unified	approach	for	mul>stage	jet	evolu>on:	
applying	different	jet	energy	loss	theories	at	different	stages	
of	jet	evolu>on	(e.g.	virtuality	ordered	DGLAP	at	high	Q	+	>me	
ordered	transport	at	low	Q)	

•  Established	a	sta>s>c	analysis	framework	--	Gaussian	process	
emulator	+	Bayesian	analysis	--	that	helps	extract	jet	transport	
coefficient	from	model	to	data	comparison	

•  Will	prepare	a	user-friendly	Monte-Carlo	event	generator	for	
the	heavy-ion	community	

Summary	and	Outlook	

Thank you! !


